Displaying DataFrames
Streamlit works seamlessly with pandas. Just pass a DataFrame to st.dataframe().
import streamlit as st
import pandas as pd
df = pd.DataFrame({
"Name": ["Alice", "Bob", "Charlie"],
"Score": [85, 92, 78]
})
st.dataframe(df)
The interactive table lets users sort columns and scroll through large datasets.
For static display, use st.table():
st.table(df)
For editable data:
edited_df = st.data_editor(df)
Users can modify cells directly, and you get the updated DataFrame.
Display metrics prominently:
st.metric("Total Users", 1234, delta="+12%")
Streamlit makes data presentation effortless.
I cover data display in my Streamlit course.