Counting Values with value_counts()
value_counts() quickly shows the distribution of values in a column.
df['status'].value_counts()
Returns counts for each unique value, sorted descending.
Get percentages instead:
df['status'].value_counts(normalize=True)
Include NaN in the count:
df['status'].value_counts(dropna=False)
Bin numeric data:
df['age'].value_counts(bins=5)
This is your go-to method for exploring categorical columns and understanding data distributions.
I use value_counts() constantly throughout my Pandas course.