Dropping Missing Data
Sometimes the simplest solution is to remove incomplete data.
Drop rows with any missing value:
df.dropna()
Drop rows only if all values are missing:
df.dropna(how='all')
Drop rows missing specific columns:
df.dropna(subset=['email', 'phone'])
Drop columns instead of rows:
df.dropna(axis=1)
Be careful - dropping can lose valuable data. Consider the trade-off between data completeness and sample size.
For smart missing data handling, see my Pandas course.